pdf | 6.89 MB | English | Isbn: 978-1617292705 | Author: Monideepa Roy | Year: 2019
Description:
Summary
Online recommender systems help users find movies, jobs, restaurants-even romance! There's an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application!
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors.
About the Book
Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you'll see how to collect user data and produce personalized recommendations. You'll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you'll encounter as your site grows.
What's inside
How to collect and understand user behavior
Collaborative and content-based filtering
Machine learning algorithms
Real-world examples in Python
About the Reader
Readers need intermediate programming and database skills.
About the Author
Kim Falk is an experienced data scientist who works daily with machine learning and recommender systems.
Table of Contents
PART 1 - GETTING READY FOR RECOMMENDER SYSTEMS
What is a recommender?
User behavior and how to collect it
Monitoring the system
Ratings and how to calculate them
Non-personalized recommendations
The user (and content) who came in from the cold
PART 2 - RECOMMENDER ALGORITHMS
Finding similarities among users and among content
Collaborative filtering in the neighborhood
Evaluating and testing your recommender
Content-based filtering
Finding hidden genres with matrix factorization
Taking the best of all algorithms: implementing hybrid recommenders
Ranking and learning to rank
Future of recommender systems
Category:Mathematical & Statistical Software, Data Mining, Data Processing