PREMIUM ACCOUNTS

Support downtopc by buying or renewing your premium account using below links:







Partners
warezload

movieblogarea download
katzdownload

Machine Learning Specialization

Category: Courses / Others
Author: AD-TEAM
Date added: 19.07.2023 :56:21
Views: 12
Comments: 0










Description material

Machine Learning Specialization


Machine Learning Specialization
Language: English | Size:9.96 GB
Genre:eLearning


Files Included :

01 welcome.mp4 (10.64 MB)
MP4
02 neurons-and-the-brain.mp4 (26.86 MB)
MP4
03 demand-prediction.mp4 (24.19 MB)
MP4
04 example-recognizing-images.mp4 (14.59 MB)
MP4
01 neural-network-layer.mp4 (20.43 MB)
MP4
02 more-complex-neural-networks.mp4 (17.03 MB)
MP4
03 inference-making-predictions-forward-propagation.mp4 (12.55 MB)
MP4
01 inference-in-code.mp4 (16.82 MB)
MP4
02 data-in-tensorflow.mp4 (24.83 MB)
MP4
03 building-a-neural-network.mp4 (24.4 MB)
MP4
01 forward-prop-in-a-single-layer.mp4 (12.38 MB)
MP4
02 general-implementation-of-forward-propagation.mp4 (21.33 MB)
MP4
01 is-there-a-path-to-agi.mp4 (28.09 MB)
MP4
01 how-neural-networks-are-implemented-efficiently.mp4 (12.24 MB)
MP4
02 matrix-multiplication.mp4 (15.89 MB)
MP4
03 matrix-multiplication-rules.mp4 (16.14 MB)
MP4
04 matrix-multiplication-code.mp4 (13.38 MB)
MP4
01 tensorflow-implementation.mp4 (11.4 MB)
MP4
02 training-details.mp4 (24.08 MB)
MP4
01 alternatives-to-the-sigmoid-activation.mp4 (11.96 MB)
MP4
02 choosing-activation-functions.mp4 (23.39 MB)
MP4
03 why-do-we-need-activation-functions.mp4 (12.93 MB)
MP4
01 multiclass.mp4 (8.37 MB)
MP4
02 softmax.mp4 (20.69 MB)
MP4
03 neural-network-with-softmax-output.mp4 (15.03 MB)
MP4
04 improved-implementation-of-softmax.mp4 (15.05 MB)
MP4
05 classification-with-multiple-outputs-optional.mp4 (11.31 MB)
MP4
01 advanced-optimization.mp4 (15.57 MB)
MP4
02 additional-layer-types.mp4 (19.53 MB)
MP4
01 what-is-a-derivative-optional.mp4 (38.3 MB)
MP4
02 computation-graph-optional.mp4 (29.97 MB)
MP4
03 larger-neural-network-example-optional.mp4 (26.11 MB)
MP4
01 deciding-what-to-try-next.mp4 (11.45 MB)
MP4
02 evaluating-a-model.mp4 (19.45 MB)
MP4
01 diagnosing-bias-and-variance.mp4 (20.3 MB)
MP4
02 regularization-and-bias-variance.mp4 (21.11 MB)
MP4
03 establishing-a-baseline-level-of-performance.mp4 (19.39 MB)
MP4
04 learning-curves.mp4 (23.28 MB)
MP4
05 deciding-what-to-try-next-revisited.mp4 (28.02 MB)
MP4
06 bias-variance-and-neural-networks.mp4 (26.94 MB)
MP4
01 iterative-loop-of-ml-development.mp4 (14.81 MB)
MP4
02 error-analysis.mp4 (17.51 MB)
MP4
03 adding-data.mp4 (32.94 MB)
MP4
04 transfer-learning-using-data-from-a-different-task.mp4 (19.02 MB)
MP4
05 full-cycle-of-a-machine-learning-project.mp4 (16.35 MB)
MP4
06 fairness-bias-and-ethics.mp4 (25.35 MB)
MP4
01 error-metrics-for-skewed-datasets.mp4 (18.95 MB)
MP4
02 trading-off-precision-and-recall.mp4 (22.17 MB)
MP4
01 decision-tree-model.mp4 (14.76 MB)
MP4
02 learning-process.mp4 (29.03 MB)
MP4
01 measuring-purity.mp4 (15.97 MB)
MP4
02 choosing-a-split-information-gain.mp4 (23.77 MB)
MP4
03 putting-it-together.mp4 (18.41 MB)
MP4
04 using-one-hot-encoding-of-categorical-features.mp4 (14.17 MB)
MP4
05 continuous-valued-features.mp4 (15.89 MB)
MP4
06 regression-trees-optional.mp4 (18.9 MB)
MP4
01 using-multiple-decision-trees.mp4 (12.51 MB)
MP4
02 sampling-with-replacement.mp4 (14.33 MB)
MP4
03 random-forest-algorithm.mp4 (12.72 MB)
MP4
04 xgboost.mp4 (21.08 MB)
MP4
05 when-to-use-decision-trees.mp4 (17.47 MB)
MP4
01 andrew-ng-and-chris-manning-on-natural-language-processing.mp4 (236.15 MB)
MP4
01 welcome-to-machine-learning.mp4 (22.19 MB)
MP4
02 applications-of-machine-learning.mp4 (33.45 MB)
MP4
01 what-is-machine-learning.mp4 (25.98 MB)
MP4
02 supervised-learning-part-1.mp4 (13.87 MB)
MP4
03 supervised-learning-part-2.mp4 (14.39 MB)
MP4
04 unsupervised-learning-part-1.mp4 (18.72 MB)
MP4
05 unsupervised-learning-part-2.mp4 (8.25 MB)
MP4
06 jupyter-notebooks.mp4 (19.9 MB)
MP4
01 linear-regression-model-part-1.mp4 (20.27 MB)
MP4
02 linear-regression-model-part-2.mp4 (16.22 MB)
MP4
03 cost-function-formula.mp4 (16.73 MB)
MP4
04 cost-function-intuition.mp4 (29.56 MB)
MP4
05 visualizing-the-cost-function.mp4 (17.32 MB)
MP4
06 visualization-examples.mp4 (17.18 MB)
MP4
01 gradient-descent.mp4 (22.48 MB)
MP4
02 implementing-gradient-descent.mp4 (20.91 MB)
MP4
03 gradient-descent-intuition.mp4 (13.2 MB)
MP4
04 learning-rate.mp4 (16.94 MB)
MP4
05 gradient-descent-for-linear-regression.mp4 (16.38 MB)
MP4
06 running-gradient-descent.mp4 (18.37 MB)
MP4
01 multiple-features.mp4 (18.89 MB)
MP4
02 vectorization-part-1.mp4 (17.27 MB)
MP4
03 vectorization-part-2.mp4 (17.26 MB)
MP4
04 gradient-descent-for-multiple-linear-regression.mp4 (19.36 MB)
MP4
01 feature-scaling-part-1.mp4 (13.64 MB)
MP4
02 feature-scaling-part-2.mp4 (14.39 MB)
MP4
03 checking-gradient-descent-for-convergence.mp4 (10.99 MB)
MP4
04 choosing-the-learning-rate.mp4 (16.31 MB)
MP4
05 feature-engineering.mp4 (7.85 MB)
MP4
06 polynomial-regression.mp4 (22.84 MB)
MP4
01 motivations.mp4 (20.96 MB)
MP4
02 logistic-regression.mp4 (21.48 MB)
MP4
03 decision-boundary.mp4 (18.94 MB)
MP4
01 cost-function-for-logistic-regression.mp4 (24.61 MB)
MP4
02 simplified-cost-function-for-logistic-regression.mp4 (11.74 MB)
MP4
01 gradient-descent-implementation.mp4 (12.76 MB)
MP4
01 the-problem-of-overfitting.mp4 (23.97 MB)
MP4
02 addressing-overfitting.mp4 (15.73 MB)
MP4
03 cost-function-with-regularization.mp4 (17.1 MB)
MP4
04 regularized-linear-regression.mp4 (19.81 MB)
MP4
05 regularized-logistic-regression.mp4 (20.9 MB)
MP4
01 andrew-ng-and-fei-fei-li-on-human-centered-ai.mp4 (214.72 MB)
MP4
03 welcome-to-the-classification-course-a-part-of-the-machine-learning.mp4 (4.62 MB)
MP4
04 what-is-this-course-about.mp4 (22.06 MB)
MP4
05 impact-of-classification.mp4 (4.04 MB)
MP4
01 course-overview.mp4 (11.43 MB)
MP4
02 outline-of-first-half-of-course.mp4 (19.39 MB)
MP4
03 outline-of-second-half-of-course.mp4 (20.16 MB)
MP4
04 assumed-background.mp4 (12.02 MB)
MP4
05 lets-get-started.mp4 (2.76 MB)
MP4
02 linear-classifiers-a-motivating-example.mp4 (9.9 MB)
MP4
03 intuition-behind-linear-classifiers.mp4 (12.31 MB)
MP4
04 decision-boundaries.mp4 (11.1 MB)
MP4
05 linear-classifier-model.mp4 (19.07 MB)
MP4
06 effect-of-coefficient-values-on-decision-boundary.mp4 (7.65 MB)
MP4
07 using-features-of-the-inputs.mp4 (8.72 MB)
MP4
01 predicting-class-probabilities.mp4 (5.7 MB)
MP4
02 review-of-basics-of-probabilities.mp4 (15.54 MB)
MP4
03 review-of-basics-of-conditional-probabilities.mp4 (19.91 MB)
MP4
04 using-probabilities-in-classification.mp4 (9.9 MB)
MP4
01 predicting-class-probabilities-with-generalized-linear-models.mp4 (19.87 MB)
MP4
02 the-sigmoid-or-logistic-link-function.mp4 (12.01 MB)
MP4
03 logistic-regression-model.mp4 (11.4 MB)
MP4
04 effect-of-coefficient-values-on-predicted-probabilities.mp4 (16.99 MB)
MP4
05 overview-of-learning-logistic-regression-models.mp4 (7.87 MB)
MP4
01 encoding-categorical-inputs.mp4 (14.56 MB)
MP4
02 multiclass-classification-with-1-versus-all.mp4 (22.67 MB)
MP4
01 recap-of-logistic-regression-classifier.mp4 (5.2 MB)
MP4
01 predicting-sentiment-from-product-reviews amazon baby csv.zip (28.67 MB)
ZIP
01 predicting-sentiment-from-product-reviews amazon baby gl.zip (40.34 MB)
ZIP
01 predicting-sentiment-from-product-reviews amazon baby sframe.zip (40.33 MB)
ZIP
01 predicting-sentiment-from-product-reviews CLA02-NB01 ipynb.zip (6.46 KB)
ZIP
02 goal-learning-parameters-of-logistic-regression.mp4 (8.84 MB)
MP4
03 intuition-behind-maximum-likelihood-estimation.mp4 (11.32 MB)
MP4
04 data-likelihood.mp4 (18.3 MB)
MP4
05 finding-best-linear-classifier-with-gradient-ascent.mp4 (9.94 MB)
MP4
01 review-of-gradient-ascent.mp4 (15.46 MB)
MP4
01 choosing-step-size.mp4 (14.4 MB)
MP4
02 careful-with-step-sizes-that-are-too-large.mp4 (11.16 MB)
MP4
03 rule-of-thumb-for-choosing-step-size.mp4 (9.36 MB)
MP4
02 very-optional-expressing-the-log-likelihood.mp4 (7.06 MB)
MP4
03 very-optional-deriving-probability-y-1-given-x.mp4 (4.96 MB)
MP4
01 recap-of-learning-logistic-regression-classifiers.mp4 (6.96 MB)
MP4
01 implementing-logistic-regression-from-scratch amazon baby subset csv.zip (9.16 MB)
ZIP
01 implementing-logistic-regression-from-scratch amazon baby subset gl.zip (12.73 MB)
ZIP
01 implementing-logistic-regression-from-scratch amazon baby subset sframe.zip (12.73 MB)
ZIP
01 implementing-logistic-regression-from-scratch CLA03-NB01 ipynb.zip (6.92 KB)
ZIP
01 implementing-logistic-regression-from-scratch important words json.zip (862 B)
ZIP
01 implementing-logistic-regression-from-scratch module-3-assignment-numpy-arrays npz.zip (1.16 MB)
ZIP
02 evaluating-a-classifier.mp4 (9.26 MB)
MP4
03 review-of-overfitting-in-regression.mp4 (9.6 MB)
MP4
04 overfitting-in-classification.mp4 (14.24 MB)
MP4
02 visualizing-overconfident-predictions.mp4 (10.19 MB)
MP4
02 l2-regularized-logistic-regression.mp4 (12.49 MB)
MP4
01 sparse-logistic-regression-with-l1-regularization.mp4 (20.75 MB)
MP4
01 logistic-regression-with-l2-regularization CLA04-NB01 ipynb.zip (7.46 KB)
ZIP
01 logistic-regression-with-l2-regularization important words json.zip (862 B)
ZIP
02 predicting-loan-defaults-with-decision-trees.mp4 (13.74 MB)
MP4
03 intuition-behind-decision-trees.mp4 (5.9 MB)
MP4
04 task-of-learning-decision-trees-from-data.mp4 (10.97 MB)
MP4
01 recursive-greedy-algorithm.mp4 (11.15 MB)
MP4
02 learning-a-decision-stump.mp4 (12.9 MB)
MP4
03 selecting-best-feature-to-split-on.mp4 (15.14 MB)
MP4
04 when-to-stop-recursing.mp4 (15.5 MB)
MP4
01 making-predictions-with-decision-trees.mp4 (4.84 MB)
MP4
02 multiclass-classification-with-decision-trees.mp4 (7 MB)
MP4
01 threshold-splits-for-continuous-inputs.mp4 (17.28 MB)
MP4
02 optional-picking-the-best-threshold-to-split-on.mp4 (9.47 MB)
MP4
03 visualizing-decision-boundaries.mp4 (13.2 MB)
MP4
01 recap-of-decision-trees.mp4 (3.43 MB)
MP4
01 identifying-safe-loans-with-decision-trees CLA05-NB01 ipynb.zip (6.21 KB)
ZIP
01 identifying-safe-loans-with-decision-trees lending-club-data csv.zip (18.53 MB)
ZIP
01 identifying-safe-loans-with-decision-trees lending-club-data gl.zip (19.38 MB)
ZIP
01 identifying-safe-loans-with-decision-trees lending-club-data sframe.zip (19.38 MB)
ZIP
01 identifying-safe-loans-with-decision-trees module-5-assignment-1-train-idx json.zip (55.12 KB)
ZIP
01 identifying-safe-loans-with-decision-trees module-5-assignment-1-validation-idx json.zip (18.94 KB)
ZIP
01 implementing-binary-decision-trees CLA05-NB02 ipynb.zip (8.24 KB)
ZIP
01 implementing-binary-decision-trees lending-club-data csv.zip (18.53 MB)
ZIP
01 implementing-binary-decision-trees lending-club-data gl.zip (19.38 MB)
ZIP
01 implementing-binary-decision-trees lending-club-data sframe.zip (19.38 MB)
ZIP
01 implementing-binary-decision-trees module-5-assignment-2-test-idx json.zip (18.92 KB)
ZIP
01 implementing-binary-decision-trees module-5-assignment-2-train-idx json.zip (55.12 KB)
ZIP
01 implementing-binary-decision-trees module-5-decision-tree-assignment-2-blank ipynb.zip (7.74 KB)
ZIP
02 a-review-of-overfitting.mp4 (7.18 MB)
MP4
03 overfitting-in-decision-trees.mp4 (16.82 MB)
MP4
01 principle-of-occams-razor-learning-simpler-decision-trees.mp4 (14.5 MB)
MP4
02 early-stopping-in-learning-decision-trees.mp4 (22.21 MB)
MP4
01 optional-motivating-pruning.mp4 (21.63 MB)
MP4
02 optional-pruning-decision-trees-to-avoid-overfitting.mp4 (16.72 MB)
MP4
03 optional-tree-pruning-algorithm.mp4 (11.89 MB)
MP4
01 decision-trees-in-practice CLA06-NB01 ipynb.zip (8.64 KB)
ZIP
01 decision-trees-in-practice lending-club-data csv.zip (18.53 MB)
ZIP
01 decision-trees-in-practice lending-club-data gl.zip (19.38 MB)
ZIP
01 decision-trees-in-practice lending-club-data sframe.zip (19.38 MB)
ZIP
01 decision-trees-in-practice module-6-assignment-train-idx json.zip (55.12 KB)
ZIP
01 decision-trees-in-practice module-6-assignment-validation-idx json.zip (18.93 KB)
ZIP
02 challenge-of-missing-data.mp4 (12.63 MB)
MP4
03 strategy-1-purification-by-skipping-missing-data.mp4 (12.92 MB)
MP4
04 strategy-2-purification-by-imputing-missing-data.mp4 (15.88 MB)
MP4
02 feature-split-selection-with-missing-data.mp4 (16.06 MB)
MP4
01 recap-of-handling-missing-data.mp4 (6.18 MB)
MP4
02 the-boosting-question.mp4 (13.24 MB)
MP4
03 ensemble-classifiers.mp4 (17.52 MB)
MP4
04 boosting.mp4 (21.42 MB)
MP4
01 adaboost-overview.mp4 (7.75 MB)
MP4
02 weighted-error.mp4 (13.15 MB)
MP4
03 computing-coefficient-of-each-ensemble-component.mp4 (12.1 MB)
MP4
04 reweighing-data-to-focus-on-mistakes.mp4 (11.78 MB)
MP4
05 normalizing-weights.mp4 (6.74 MB)
MP4
01 example-of-adaboost-in-action.mp4 (11.87 MB)
MP4
02 learning-boosted-decision-stumps-with-adaboost.mp4 (13.99 MB)
MP4
01 exploring-ensemble-methods CLA08-NB01 ipynb.zip (7.11 KB)
ZIP
01 exploring-ensemble-methods lending-club-data csv.zip (18.53 MB)
ZIP
01 exploring-ensemble-methods lending-club-data gl.zip (19.38 MB)
ZIP
01 exploring-ensemble-methods lending-club-data sframe.zip (19.38 MB)
ZIP
01 exploring-ensemble-methods module-8-assignment-1-train-idx json.zip (55.03 KB)
ZIP
01 exploring-ensemble-methods module-8-assignment-1-validation-idx json.zip (18.93 KB)
ZIP
01 the-boosting-theorem.mp4 (10.85 MB)
MP4
02 overfitting-in-boosting.mp4 (14.59 MB)
MP4
01 ensemble-methods-impact-of-boosting-quick-recap.mp4 (16.2 MB)
MP4
01 boosting-a-decision-stump CLA08-NB02 ipynb.zip (10.2 KB)
ZIP
01 boosting-a-decision-stump lending-club-data csv.zip (18.53 MB)
ZIP
01 boosting-a-decision-stump lending-club-data gl.zip (19.38 MB)
ZIP
01 boosting-a-decision-stump lending-club-data sframe.zip (19.38 MB)
ZIP
01 boosting-a-decision-stump module-8-assignment-2-test-idx json.zip (18.92 KB)
ZIP
01 boosting-a-decision-stump module-8-assignment-2-train-idx json.zip (55.12 KB)
ZIP
01 boosting-a-decision-stump module-8-boosting-assignment-2-blank ipynb.zip (9.76 KB)
ZIP
02 case-study-where-accuracy-is-not-best-metric-for-classification.mp4 (12.61 MB)
MP4
03 what-is-good-performance-for-a-classifier.mp4 (13.81 MB)
MP4
01 precision-fraction-of-positive-predictions-that-are-actually-positive.mp4 (15.57 MB)
MP4
02 recall-fraction-of-positive-data-predicted-to-be-positive.mp4 (10.56 MB)
MP4
01 precision-recall-extremes.mp4 (8.63 MB)
MP4
02 trading-off-precision-and-recall.mp4 (13.2 MB)
MP4
03 precision-recall-curve.mp4 (15.66 MB)
MP4
01 recap-of-precision-recall.mp4 (5.11 MB)
MP4
01 exploring-precision-and-recall amazon baby csv.zip (28.67 MB)
ZIP
01 exploring-precision-and-recall amazon baby gl.zip (40.34 MB)
ZIP
01 exploring-precision-and-recall amazon baby sframe.zip (40.33 MB)
ZIP
01 exploring-precision-and-recall CLA09-NB01 ipynb.zip (6.34 KB)
ZIP
01 exploring-precision-and-recall module-9-assignment-test-idx json.zip (46.63 KB)
ZIP
01 exploring-precision-and-recall module-9-assignment-train-idx json.zip (163.92 KB)
ZIP
02 gradient-ascent-won-t-scale-to-todays-huge-datasets.mp4 (11.97 MB)
MP4
03 timeline-of-scalable-machine-learning-stochastic-gradient.mp4 (12.07 MB)
MP4
01 why-gradient-ascent-won-t-scale.mp4 (8.91 MB)
MP4
02 stochastic-gradient-learning-one-data-point-at-a-time.mp4 (8.82 MB)
MP4
03 comparing-gradient-to-stochastic-gradient.mp4 (11.1 MB)
MP4
01 why-would-stochastic-gradient-ever-work.mp4 (10.36 MB)
MP4
02 convergence-paths.mp4 (7.09 MB)
MP4
01 shuffle-data-before-running-stochastic-gradient.mp4 (5.89 MB)
MP4
02 choosing-step-size.mp4 (9.64 MB)
MP4
03 don-t-trust-last-coefficients.mp4 (6.02 MB)
MP4
04 optional-learning-from-batches-of-data.mp4 (11.99 MB)
MP4
05 optional-measuring-convergence.mp4 (12.5 MB)
MP4
06 optional-adding-regularization.mp4 (10.85 MB)
MP4
01 the-online-learning-task.mp4 (10.21 MB)
MP4
03 welcome-and-introduction-to-clustering-and-retrieval-tasks.mp4 (19.84 MB)
MP4
04 course-overview.mp4 (10.58 MB)
MP4
05 module-by-module-topics-covered.mp4 (28.97 MB)
MP4
06 assumed-background.mp4 (19.43 MB)
MP4
02 retrieval-as-k-nearest-neighbor-search.mp4 (9.38 MB)
MP4
03 1-nn-algorithm.mp4 (6.79 MB)
MP4
04 k-nn-algorithm.mp4 (17.38 MB)
MP4
01 document-representation.mp4 (14.08 MB)
MP4
04 distance-metrics-cosine-similarity.mp4 (20.12 MB)
MP4
01 choosing-features-and-metrics-for-nearest-neighbor-search CLU02-NB01 ipynb.zip (7.61 KB)
ZIP
01 choosing-features-and-metrics-for-nearest-neighbor-search people wiki csv.zip (39.86 MB)
ZIP
01 choosing-features-and-metrics-for-nearest-neighbor-search people wiki gl.zip (55.57 MB)
ZIP
01 choosing-features-and-metrics-for-nearest-neighbor-search people wiki sframe.zip (56.24 MB)
ZIP
01 complexity-of-brute-force-search.mp4 (5.92 MB)
MP4
02 kd-tree-representation.mp4 (22.57 MB)
MP4
03 nn-search-with-kd-trees.mp4 (16.25 MB)
MP4
04 complexity-of-nn-search-with-kd-trees.mp4 (13.51 MB)
MP4
05 visualizing-scaling-behavior-of-kd-trees.mp4 (10.15 MB)
MP4
06 approximate-k-nn-search-using-kd-trees.mp4 (22.95 MB)
MP4
01 limitations-of-kd-trees.mp4 (11.58 MB)
MP4
02 lsh-as-an-alternative-to-kd-trees.mp4 (12.85 MB)
MP4
03 using-random-lines-to-partition-points.mp4 (17.06 MB)
MP4
04 defining-more-bins.mp4 (10.54 MB)
MP4
05 searching-neighboring-bins.mp4 (22.02 MB)
MP4
06 lsh-in-higher-dimensions.mp4 (9.9 MB)
MP4
01 implementing-locality-sensitive-hashing-from-scratch CLU02-NB02 ipynb.zip (10.09 KB)
ZIP
01 implementing-locality-sensitive-hashing-from-scratch people wiki csv.zip (39.86 MB)
ZIP
01 implementing-locality-sensitive-hashing-from-scratch people wiki gl.zip (55.57 MB)
ZIP
01 implementing-locality-sensitive-hashing-from-scratch people wiki sframe.zip (56.24 MB)
ZIP
01 implementing-locality-sensitive-hashing-from-scratch people wiki tf idf npz.zip (50.92 MB)
ZIP
01 a-brief-recap.mp4 (6.37 MB)
MP4
02 the-goal-of-clustering.mp4 (10.66 MB)
MP4
03 an-unsupervised-task.mp4 (16.48 MB)
MP4
04 hope-for-unsupervised-learning-and-some-challenge-cases.mp4 (11.58 MB)
MP4
01 the-k-means-algorithm.mp4 (17.25 MB)
MP4
02 k-means-as-coordinate-descent.mp4 (17.76 MB)
MP4
03 smart-initialization-via-k-means.mp4 (12.09 MB)
MP4
04 assessing-the-quality-and-choosing-the-number-of-clusters.mp4 (21.18 MB)
MP4
01 clustering-text-data-with-k-means CLU03-NB01 ipynb.zip (13.96 KB)
ZIP
01 clustering-text-data-with-k-means kmeans-arrays npz.zip (47.62 MB)
ZIP
01 clustering-text-data-with-k-means people wiki csv.zip (39.86 MB)
ZIP
01 clustering-text-data-with-k-means people wiki gl.zip (55.57 MB)
ZIP
01 clustering-text-data-with-k-means people wiki sframe.zip (56.24 MB)
ZIP
01 clustering-text-data-with-k-means people wiki map index to word gl.zip (3.7 MB)
ZIP
01 clustering-text-data-with-k-means people wiki map index to word json.zip (5.04 MB)
ZIP
01 clustering-text-data-with-k-means people wiki tf idf npz.zip (50.92 MB)
ZIP
01 motivating-mapreduce.mp4 (20.39 MB)
MP4
02 the-general-mapreduce-abstraction.mp4 (12.11 MB)
MP4
03 mapreduce-execution-overview-and-combiners.mp4 (14.42 MB)
MP4
04 mapreduce-for-k-means.mp4 (18.54 MB)
MP4
01 other-applications-of-clustering.mp4 (21.55 MB)
MP4
02 a-brief-recap.mp4 (3.73 MB)
MP4
02 motiving-probabilistic-clustering-models.mp4 (22.35 MB)
MP4
03 aggregating-over-unknown-classes-in-an-image-dataset.mp4 (21.56 MB)
MP4
04 univariate-gaussian-distributions.mp4 (9.02 MB)
MP4
05 bivariate-and-multivariate-gaussians.mp4 (21.26 MB)
MP4
01 mixture-of-gaussians.mp4 (21.04 MB)
MP4
02 interpreting-the-mixture-of-gaussian-terms.mp4 (14.38 MB)
MP4
03 scaling-mixtures-of-gaussians-for-document-clustering.mp4 (17.21 MB)
MP4
01 computing-soft-assignments-from-known-cluster-parameters.mp4 (21.76 MB)
MP4
02 optional-responsibilities-as-bayes-rule.mp4 (14.41 MB)
MP4
03 estimating-cluster-parameters-from-known-cluster-assignments.mp4 (18.82 MB)
MP4
04 estimating-cluster-parameters-from-soft-assignments.mp4 (21.4 MB)
MP4
01 em-iterates-in-equations-and-pictures.mp4 (16.69 MB)
MP4
02 convergence-initialization-and-overfitting-of-em.mp4 (29.91 MB)
MP4
03 relationship-to-k-means.mp4 (10.37 MB)
MP4
01 a-brief-recap.mp4 (4.42 MB)
MP4
01 implementing-em-for-gaussian-mixtures CLU04-NB01 ipynb.zip (11.17 KB)
ZIP
01 implementing-em-for-gaussian-mixtures images sf.zip (11.18 MB)
ZIP
01 implementing-em-for-gaussian-mixtures images.zip (13.79 MB)
ZIP
01 clustering-text-data-with-gaussian-mixtures 4 map index to word gl.zip (623.64 KB)
ZIP
01 clustering-text-data-with-gaussian-mixtures 4 map index to word json.zip (834.29 KB)
ZIP
01 clustering-text-data-with-gaussian-mixtures 4 tf idf npz.zip (3.24 MB)
ZIP
01 clustering-text-data-with-gaussian-mixtures CLU04-NB02 ipynb.zip (5.51 KB)
ZIP
01 clustering-text-data-with-gaussian-mixtures em utilities py.zip (2.79 KB)
ZIP
01 clustering-text-data-with-gaussian-mixtures people wiki csv.zip (39.86 MB)
ZIP
01 clustering-text-data-with-gaussian-mixtures people wiki gl.zip (55.57 MB)
ZIP
01 clustering-text-data-with-gaussian-mixtures people wiki sframe.zip (56.24 MB)
ZIP
05 goal-of-lda-inference.mp4 (18.22 MB)
MP4
01 what-is-collapsed-gibbs-sampling.mp4 (11.71 MB)
MP4
01 a-brief-recap.mp4 (5.05 MB)
MP4
02 module-1-recap.mp4 (29.31 MB)
MP4
03 module-2-recap.mp4 (10.54 MB)
MP4
04 module-3-recap.mp4 (19.72 MB)
MP4
05 module-4-recap.mp4 (25.94 MB)
MP4
04 the-dendrogram.mp4 (15.35 MB)
MP4
01 modeling-text-data-with-a-hierarchy-of-clusters em utilities py.zip (2.79 KB)
ZIP
01 modeling-text-data-with-a-hierarchy-of-clusters people wiki csv.zip (39.86 MB)
ZIP
01 modeling-text-data-with-a-hierarchy-of-clusters people wiki gl.zip (55.57 MB)
ZIP
01 what-we-didn-t-cover.mp4 (8.6 MB)
MP4
02 thank-you.mp4 (7.11 MB)
MP4
03 welcome-to-this-course-and-specialization.mp4 (3.32 MB)
MP4
04 who-we-are.mp4 (28.43 MB)
MP4
05 machine-learning-is-changing-the-world.mp4 (16.31 MB)
MP4
06 why-a-case-study-approach.mp4 (29.06 MB)
MP4
07 specialization-overview.mp4 (27.28 MB)
MP4
01 how-we-got-into-ml.mp4 (19.12 MB)
MP4
02 who-is-this-specialization-for.mp4 (14.35 MB)
MP4
03 what-you-ll-be-able-to-do.mp4 (4.45 MB)
MP4
04 the-capstone-and-an-example-intelligent-application.mp4 (22.15 MB)
MP4
05 the-future-of-intelligent-applications.mp4 (12.79 MB)
MP4
02 starting-a-jupyter-notebook.mp4 (13.77 MB)
MP4
03 creating-variables-in-python.mp4 (17.69 MB)
MP4
04 conditional-statements-and-loops-in-python.mp4 (20.14 MB)
MP4
05 creating-functions-and-lambdas-in-python.mp4 (9.06 MB)
MP4
02 starting-turi-create-loading-an-sframe.mp4 (11.53 MB)
MP4
03 canvas-for-data-visualization.mp4 (9.76 MB)
MP4
04 interacting-with-columns-of-an-sframe.mp4 (10.46 MB)
MP4
05 using-apply-for-data-transformation.mp4 (12.46 MB)
MP4
01 download-wiki-people-data people wiki sframe.zip (56.24 MB)
ZIP
02 predicting-house-prices-a-case-study-in-regression.mp4 (3.83 MB)
MP4
03 what-is-the-goal-and-how-might-you-naively-address-it.mp4 (10.06 MB)
MP4
04 linear-regression-a-model-based-approach.mp4 (12.72 MB)
MP4
05 adding-higher-order-effects.mp4 (10.41 MB)
MP4
01 evaluating-overfitting-via-training-test-split.mp4 (15.44 MB)
MP4
02 training-test-curves.mp4 (9.46 MB)
MP4
03 adding-other-features.mp4 (6.66 MB)
MP4
04 other-regression-examples.mp4 (13.48 MB)
MP4
01 regression-ml-block-diagram.mp4 (15.47 MB)
MP4
02 loading-exploring-house-sale-data.mp4 (18.41 MB)
MP4
03 splitting-the-data-into-training-and-test-sets.mp4 (6.17 MB)
MP4
05 evaluating-error-rmse-of-the-simple-model.mp4 (6.15 MB)
MP4
06 visualizing-predictions-of-simple-model-with-matplotlib.mp4 (11.87 MB)
MP4
07 inspecting-the-model-coefficients-learned.mp4 (3.39 MB)
MP4
08 exploring-other-features-of-the-data.mp4 (13.66 MB)
MP4
09 learning-a-model-to-predict-house-prices-from-more-features.mp4 (7.73 MB)
MP4
10 applying-learned-models-to-predict-price-of-an-average-house.mp4 (12.65 MB)
MP4
11 applying-learned-models-to-predict-price-of-two-fancy-houses.mp4 (22.37 MB)
MP4
01 predicting-house-prices-assignment FND02-NB01 ipynb.zip (67.26 KB)
ZIP
01 predicting-house-prices-assignment home data sframe.zip (908.17 KB)
ZIP
01 predicting-house-prices-assignment house images.zip (4.66 MB)
ZIP
02 analyzing-the-sentiment-of-reviews-a-case-study-in-classification.mp4 (2.85 MB)
MP4
03 what-is-an-intelligent-restaurant-review-system.mp4 (18.51 MB)
MP4
04 examples-of-classification-tasks.mp4 (23.02 MB)
MP4
05 linear-classifiers.mp4 (18.54 MB)
MP4
06 decision-boundaries.mp4 (16 MB)
MP4
01 training-and-evaluating-a-classifier.mp4 (12.95 MB)
MP4
02 whats-a-good-accuracy.mp4 (15.81 MB)
MP4
03 false-positives-false-negatives-and-confusion-matrices.mp4 (16.92 MB)
MP4
04 learning-curves.mp4 (22.21 MB)
MP4
05 class-probabilities.mp4 (8.66 MB)
MP4
01 classification-ml-block-diagram.mp4 (10.66 MB)
MP4
02 loading-exploring-product-review-data.mp4 (8 MB)
MP4
03 creating-the-word-count-vector.mp4 (6.19 MB)
MP4
04 exploring-the-most-popular-product.mp4 (12.11 MB)
MP4
05 defining-which-reviews-have-positive-or-negative-sentiment.mp4 (11.62 MB)
MP4
06 training-a-sentiment-classifier.mp4 (9.07 MB)
MP4
07 evaluating-a-classifier-the-roc-curve.mp4 (11.89 MB)
MP4
08 applying-model-to-find-most-positive-negative-reviews-for-a-product.mp4 (13.19 MB)
MP4
09 exploring-the-most-positive-negative-aspects-of-a-product.mp4 (15.78 MB)
MP4
01 analyzing-product-sentiment-assignment amazon baby sframe.zip (40.33 MB)
ZIP
01 analyzing-product-sentiment-assignment FND03-NB01 ipynb.zip (13.08 KB)
ZIP
06 calculating-tf-idf-vectors.mp4 (14.52 MB)
MP4
01 clustering-documents-task-overview.mp4 (9.84 MB)
MP4
02 clustering-documents-an-unsupervised-learning-task.mp4 (11.27 MB)
MP4
03 k-means-a-clustering-algorithm.mp4 (9.48 MB)
MP4
04 other-examples-of-clustering.mp4 (19.77 MB)
MP4
01 clustering-and-similarity-ml-block-diagram.mp4 (18.91 MB)
MP4
02 loading-exploring-wikipedia-data.mp4 (17.54 MB)
MP4
03 exploring-word-counts.mp4 (18.75 MB)
MP4
04 computing-exploring-tf-idfs.mp4 (18.35 MB)
MP4
05 computing-distances-between-wikipedia-articles.mp4 (15.38 MB)
MP4
07 examples-of-document-retrieval-in-action.mp4 (12.94 MB)
MP4
01 retrieving-wikipedia-articles-assignment FND04-NB01 ipynb.zip (11.61 KB)
ZIP
01 retrieving-wikipedia-articles-assignment people wiki sframe.zip (56.24 MB)
ZIP
02 recommender-systems-overview.mp4 (4.62 MB)
MP4
03 where-we-see-recommender-systems-in-action.mp4 (26.7 MB)
MP4
04 building-a-recommender-system-via-classification.mp4 (13.42 MB)
MP4
01 collaborative-filtering-people-who-bought-this-also-bought.mp4 (15.26 MB)
MP4
02 effect-of-popular-items.mp4 (8.05 MB)
MP4
01 the-matrix-completion-task.mp4 (14.78 MB)
MP4
02 recommendations-from-known-user-item-features.mp4 (14.18 MB)
MP4
03 predictions-in-matrix-form.mp4 (7.45 MB)
MP4
04 discovering-hidden-structure-by-matrix-factorization.mp4 (17.22 MB)
MP4
05 bringing-it-all-together-featurized-matrix-factorization.mp4 (11.26 MB)
MP4
01 a-performance-metric-for-recommender-systems.mp4 (16.52 MB)
MP4
02 optimal-recommenders.mp4 (5.88 MB)
MP4
03 precision-recall-curves.mp4 (16.28 MB)
MP4
01 recommender-systems-ml-block-diagram.mp4 (12.28 MB)
MP4
01 download-the-jupyter-notebook-used-in-this-lesson-to-follow-along FND05-NB01 ipynb.zip (15.14 KB)
ZIP
01 download-the-jupyter-notebook-used-in-this-lesson-to-follow-along song data sframe.zip (47.97 MB)
ZIP
02 loading-and-exploring-song-data.mp4 (14.79 MB)
MP4
03 creating-evaluating-a-popularity-based-song-recommender.mp4 (13.15 MB)
MP4
04 creating-evaluating-a-personalized-song-recommender.mp4 (16.4 MB)
MP4
05 using-precision-recall-to-compare-recommender-models.mp4 (11.25 MB)
MP4
01 recommending-songs-assignment FND05-NB01 ipynb.zip (15.14 KB)
ZIP
01 recommending-songs-assignment song data sframe.zip (47.97 MB)
ZIP
02 searching-for-images-a-case-study-in-deep-learning.mp4 (1.68 MB)
MP4
03 what-is-a-visual-product-recommender.mp4 (16.65 MB)
MP4
04 learning-very-non-linear-features-with-neural-networks.mp4 (32.85 MB)
MP4
01 application-of-deep-learning-to-computer-vision.mp4 (19.31 MB)
MP4
02 deep-learning-performance.mp4 (13.24 MB)
MP4
03 demo-of-deep-learning-model-on-imagenet-data.mp4 (7.87 MB)
MP4
04 other-examples-of-deep-learning-in-computer-vision.mp4 (6.71 MB)
MP4
05 challenges-of-deep-learning.mp4 (11.07 MB)
MP4
06 deep-features.mp4 (24.39 MB)
MP4
01 deep-learning-ml-block-diagram.mp4 (11.14 MB)
MP4
02 loading-image-data.mp4 (9.42 MB)
MP4
02 loading-image-data.mp4 (7.42 MB)
MP4
05 querying-for-the-most-similar-images-for-car-image.mp4 (4.64 MB)
MP4
01 deep-features-for-image-retrieval-assignment image test data.zip (50.92 MB)
ZIP
01 deep-features-for-image-retrieval-assignment image train data.zip (25.35 MB)
ZIP
02 you-ve-made-it.mp4 (2.82 MB)
MP4
03 deploying-an-ml-service.mp4 (15.11 MB)
MP4
04 what-happens-after-deployment.mp4 (29.95 MB)
MP4
01 open-challenges-in-ml.mp4 (33.33 MB)
MP4
02 where-is-ml-going.mp4 (37.8 MB)
MP4
03 whats-ahead-in-the-specialization.mp4 (22.19 MB)
MP4
04 thank-you.mp4 (8.23 MB)
MP4
03 welcome.mp4 (4.87 MB)
MP4
04 what-is-the-course-about.mp4 (11.19 MB)
MP4
05 outlining-the-first-half-of-the-course.mp4 (14.84 MB)
MP4
06 outlining-the-second-half-of-the-course.mp4 (16.16 MB)
MP4
07 assumed-background.mp4 (11.85 MB)
MP4
02 a-case-study-in-predicting-house-prices.mp4 (3.81 MB)
MP4
03 regression-fundamentals-data-model.mp4 (22.35 MB)
MP4
04 regression-fundamentals-the-task.mp4 (7.33 MB)
MP4
05 regression-ml-block-diagram.mp4 (11.74 MB)
MP4
01 the-simple-linear-regression-model.mp4 (7.65 MB)
MP4
02 the-cost-of-using-a-given-line.mp4 (17.45 MB)
MP4
03 using-the-fitted-line.mp4 (16.62 MB)
MP4
04 interpreting-the-fitted-line.mp4 (15.17 MB)
MP4
01 defining-our-least-squares-optimization-objective.mp4 (10.19 MB)
MP4
02 finding-maxima-or-minima-analytically.mp4 (16.85 MB)
MP4
03 maximizing-a-1d-function-a-worked-example.mp4 (7.33 MB)
MP4
04 finding-the-max-via-hill-climbing.mp4 (15.69 MB)
MP4
05 finding-the-min-via-hill-descent.mp4 (8.54 MB)
MP4
06 choosing-stepsize-and-convergence-criteria.mp4 (14.71 MB)
MP4
01 gradients-derivatives-in-multiple-dimensions.mp4 (14.01 MB)
MP4
02 gradient-descent-multidimensional-hill-descent.mp4 (16.87 MB)
MP4
01 computing-the-gradient-of-rss.mp4 (17.03 MB)
MP4
02 approach-1-closed-form-solution.mp4 (14.07 MB)
MP4
04 approach-2-gradient-descent.mp4 (18.36 MB)
MP4
06 comparing-the-approaches.mp4 (6.22 MB)
MP4
01 download-notebooks-to-follow-along PhillyCrime ipynb.zip (44.94 KB)
ZIP
02 influence-of-high-leverage-points-exploring-the-data.mp4 (11.92 MB)
MP4
03 influence-of-high-leverage-points-removing-center-city.mp4 (19.52 MB)
MP4
04 influence-of-high-leverage-points-removing-high-end-towns.mp4 (9.33 MB)
MP4
05 asymmetric-cost-functions.mp4 (9.4 MB)
MP4
06 a-brief-recap.mp4 (4.48 MB)
MP4
01 fitting-a-simple-linear-regression-model-on-housing-data home data sframe.zip (908.17 KB)
ZIP
01 fitting-a-simple-linear-regression-model-on-housing-data kc house data csv.zip (780.66 KB)
ZIP
01 fitting-a-simple-linear-regression-model-on-housing-data kc house test data csv.zip (154.8 KB)
ZIP
01 fitting-a-simple-linear-regression-model-on-housing-data kc house train data csv.zip (628.45 KB)
ZIP
01 fitting-a-simple-linear-regression-model-on-housing-data REG01-NB01 ipynb.zip (4.07 KB)
ZIP
02 multiple-regression-intro.mp4 (1.21 MB)
MP4
03 polynomial-regression.mp4 (11.56 MB)
MP4
04 modeling-seasonality.mp4 (30.01 MB)
MP4
05 where-we-see-seasonality.mp4 (11.26 MB)
MP4
06 regression-with-general-features-of-1-input.mp4 (8.6 MB)
MP4
01 motivating-the-use-of-multiple-inputs.mp4 (14.17 MB)
MP4
02 defining-notation.mp4 (11.87 MB)
MP4
03 regression-with-features-of-multiple-inputs.mp4 (12.6 MB)
MP4
04 interpreting-the-multiple-regression-fit.mp4 (24.67 MB)
MP4
02 rewriting-the-single-observation-model-in-vector-notation.mp4 (15.44 MB)
MP4
03 rewriting-the-model-for-all-observations-in-matrix-notation.mp4 (10.19 MB)
MP4
04 computing-the-cost-of-a-d-dimensional-curve.mp4 (21.24 MB)
MP4
01 computing-the-gradient-of-rss.mp4 (7.25 MB)
MP4
02 approach-1-closed-form-solution.mp4 (9.99 MB)
MP4
03 discussing-the-closed-form-solution.mp4 (10.85 MB)
MP4
04 approach-2-gradient-descent.mp4 (5.36 MB)
MP4
05 feature-by-feature-update.mp4 (18.98 MB)
MP4
06 algorithmic-summary-of-gradient-descent-approach.mp4 (10.97 MB)
MP4
01 a-brief-recap.mp4 (3.91 MB)
MP4
01 exploring-different-multiple-regression-models-for-house-price-prediction home data sframe.zip (908.17 KB)
ZIP
01 exploring-different-multiple-regression-models-for-house-price-prediction kc house data csv.zip (780.66 KB)
ZIP
01 exploring-different-multiple-regression-models-for-house-price-prediction REG02-NB01 ipynb.zip (3.44 KB)
ZIP
01 numpy-tutorial numpy-tutorial ipynb.zip (2.95 KB)
ZIP
02 implementing-gradient-descent-for-multiple-regression home data sframe.zip (908.17 KB)
ZIP
02 implementing-gradient-descent-for-multiple-regression kc house data csv.zip (780.66 KB)
ZIP
02 implementing-gradient-descent-for-multiple-regression kc house test data csv.zip (154.8 KB)
ZIP
02 implementing-gradient-descent-for-multiple-regression kc house train data csv.zip (628.45 KB)
ZIP
02 implementing-gradient-descent-for-multiple-regression REG02-NB02 ipynb.zip (5.65 KB)
ZIP
02 assessing-performance-intro.mp4 (1.77 MB)
MP4
03 what-do-we-mean-by-loss.mp4 (13.85 MB)
MP4
01 training-error-assessing-loss-on-the-training-set.mp4 (20.37 MB)
MP4
02 generalization-error-what-we-really-want.mp4 (21.76 MB)
MP4
03 test-error-what-we-can-actually-compute.mp4 (12.93 MB)
MP4
04 defining-overfitting.mp4 (6.1 MB)
MP4
05 training-test-split.mp4 (6.1 MB)
MP4
01 irreducible-error-and-bias.mp4 (20.89 MB)
MP4
02 variance-and-the-bias-variance-tradeoff.mp4 (18.96 MB)
MP4
03 error-vs-amount-of-data.mp4 (14.68 MB)
MP4
01 training-validation-test-split-for-model-selection-fitting-and-assessment.mp4 (25.37 MB)
MP4
02 a-brief-recap.mp4 (5.01 MB)
MP4
01 polynomial-regression home data sframe.zip (908.17 KB)
ZIP
01 polynomial-regression kc house data csv.zip (780.66 KB)
ZIP
01 polynomial-regression numpy-tutorial-py3 ipynb.zip (2.92 KB)
ZIP
01 polynomial-regression REG03-NB01 ipynb.zip (4.2 KB)
ZIP
01 polynomial-regression wk3 kc house set 1 data csv.zip (158.64 KB)
ZIP
01 polynomial-regression wk3 kc house set 2 data csv.zip (157.64 KB)
ZIP
01 polynomial-regression wk3 kc house set 3 data csv.zip (158.66 KB)
ZIP
01 polynomial-regression wk3 kc house set 4 data csv.zip (158.3 KB)
ZIP
01 polynomial-regression wk3 kc house test data csv.zip (81.7 KB)
ZIP
01 polynomial-regression wk3 kc house train data csv.zip (354.68 KB)
ZIP
01 polynomial-regression wk3 kc house valid data csv.zip (349.96 KB)
ZIP
02 symptoms-of-overfitting-in-polynomial-regression.mp4 (6.91 MB)
MP4
03 download-the-notebook-and-follow-along Overfitting Demo Ridge Lasso ipynb.zip (198.44 KB)
ZIP
04 overfitting-demo.mp4 (16.94 MB)
MP4
05 overfitting-for-more-general-multiple-regression-models.mp4 (11.33 MB)
MP4
01 balancing-fit-and-magnitude-of-coefficients.mp4 (18.11 MB)
MP4
02 the-resulting-ridge-objective-and-its-extreme-solutions.mp4 (13.61 MB)
MP4
03 how-ridge-regression-balances-bias-and-variance.mp4 (5.33 MB)
MP4
04 download-the-notebook-and-follow-along Overfitting Demo Ridge Lasso ipynb.zip (198.44 KB)
ZIP
05 ridge-regression-demo.mp4 (24.95 MB)
MP4
06 the-ridge-coefficient-path.mp4 (9.57 MB)
MP4
01 computing-the-gradient-of-the-ridge-objective.mp4 (14.78 MB)
MP4
02 approach-1-closed-form-solution.mp4 (13.31 MB)
MP4
03 discussing-the-closed-form-solution.mp4 (13.45 MB)
MP4
04 approach-2-gradient-descent.mp4 (22.08 MB)
MP4
01 selecting-tuning-parameters-via-cross-validation.mp4 (12.39 MB)
MP4
02 k-fold-cross-validation.mp4 (17.01 MB)
MP4
03 how-to-handle-the-intercept.mp4 (18.6 MB)
MP4
04 a-brief-recap.mp4 (5.24 MB)
MP4
01 observing-effects-of-l2-penalty-in-polynomial-regression home data sframe.zip (908.17 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression kc house data csv.zip (780.66 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression numpy-tutorial-py3 ipynb.zip (2.92 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression REG04-NB01 ipynb.zip (5.9 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house set 1 data csv.zip (158.64 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house set 2 data csv.zip (157.64 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house set 3 data csv.zip (158.66 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house set 4 data csv.zip (158.3 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house test data csv.zip (81.7 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house train data csv.zip (354.68 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house train valid shuffled csv.zip (609.97 KB)
ZIP
01 observing-effects-of-l2-penalty-in-polynomial-regression wk3 kc house valid data csv.zip (349.96 KB)
ZIP
01 implementing-ridge-regression-via-gradient-descent home data sframe.zip (908.17 KB)
ZIP
01 implementing-ridge-regression-via-gradient-descent kc house data csv.zip (780.66 KB)
ZIP
01 implementing-ridge-regression-via-gradient-descent kc house test data csv.zip (154.8 KB)
ZIP
01 implementing-ridge-regression-via-gradient-descent kc house train data csv.zip (628.45 KB)
ZIP
01 implementing-ridge-regression-via-gradient-descent numpy-tutorial-py3 ipynb.zip (2.92 KB)
ZIP
01 implementing-ridge-regression-via-gradient-descent REG04-NB02 ipynb.zip (4.71 KB)
ZIP
02 the-feature-selection-task.mp4 (11.53 MB)
MP4
03 all-subsets.mp4 (13.65 MB)
MP4
04 complexity-of-all-subsets.mp4 (6.84 MB)
MP4
05 greedy-algorithms.mp4 (18.66 MB)
MP4
06 complexity-of-the-greedy-forward-stepwise-algorithm.mp4 (8.4 MB)
MP4
01 can-we-use-regularization-for-feature-selection.mp4 (11.56 MB)
MP4
02 thresholding-ridge-coefficients.mp4 (13.86 MB)
MP4
03 the-lasso-objective-and-its-coefficient-path.mp4 (15.55 MB)
MP4
01 visualizing-the-ridge-cost.mp4 (17.83 MB)
MP4
02 visualizing-the-ridge-solution.mp4 (14.71 MB)
MP4
03 visualizing-the-lasso-cost-and-solution.mp4 (18.4 MB)
MP4
05 lasso-demo.mp4 (12.17 MB)
MP4
01 what-makes-the-lasso-objective-different.mp4 (8.39 MB)
MP4
02 coordinate-descent.mp4 (15.11 MB)
MP4
03 normalizing-features.mp4 (9.35 MB)
MP4
04 coordinate-descent-for-least-squares-regression-normalized-features.mp4 (20.81 MB)
MP4
01 coordinate-descent-for-lasso-normalized-features.mp4 (12.61 MB)
MP4
02 assessing-convergence-and-other-lasso-solvers.mp4 (9.33 MB)
MP4
03 coordinate-descent-for-lasso-unnormalized-features.mp4 (5.91 MB)
MP4
01 deriving-the-lasso-coordinate-descent-update.mp4 (42.7 MB)
MP4
01 choosing-the-penalty-strength-and-other-practical-issues-with-lasso.mp4 (19.38 MB)
MP4
02 a-brief-recap.mp4 (11.18 MB)
MP4
01 using-lasso-to-select-features home data sframe.zip (908.17 KB)
ZIP
01 using-lasso-to-select-features kc house data csv.zip (780.66 KB)
ZIP
01 using-lasso-to-select-features numpy-tutorial-py3 ipynb.zip (2.92 KB)
ZIP
01 using-lasso-to-select-features REG05-NB01 ipynb.zip (3.94 KB)
ZIP
01 using-lasso-to-select-features wk3 kc house test data csv.zip (81.7 KB)
ZIP
01 using-lasso-to-select-features wk3 kc house train data csv.zip (354.68 KB)
ZIP
01 using-lasso-to-select-features wk3 kc house valid data csv.zip (349.96 KB)
ZIP
01 implementing-lasso-using-coordinate-descent home data sframe.zip (908.17 KB)
ZIP
01 implementing-lasso-using-coordinate-descent kc house data csv.zip (780.66 KB)
ZIP
01 implementing-lasso-using-coordinate-descent kc house test data csv.zip (154.8 KB)
ZIP
01 implementing-lasso-using-coordinate-descent kc house train data csv.zip (628.45 KB)
ZIP
01 implementing-lasso-using-coordinate-descent numpy-tutorial-py3 ipynb.zip (2.92 KB)
ZIP
01 implementing-lasso-using-coordinate-descent REG05-NB02 ipynb.zip (5.66 KB)
ZIP
02 limitations-of-parametric-regression.mp4 (11.29 MB)
MP4
01 1-nearest-neighbor-regression-approach.mp4 (21.48 MB)
MP4
02 distance-metrics.mp4 (14.18 MB)
MP4
03 1-nearest-neighbor-algorithm.mp4 (10.84 MB)
MP4
01 k-nearest-neighbors-regression.mp4 (19.3 MB)
MP4
02 k-nearest-neighbors-in-practice.mp4 (11.67 MB)
MP4
03 weighted-k-nearest-neighbors.mp4 (13.81 MB)
MP4
01 from-weighted-k-nn-to-kernel-regression.mp4 (18.56 MB)
MP4
02 global-fits-of-parametric-models-vs-local-fits-of-kernel-regression.mp4 (20.08 MB)
MP4
01 performance-of-nn-as-amount-of-data-grows.mp4 (21.87 MB)
MP4
02 issues-with-high-dimensions-data-scarcity-and-computational-complexity.mp4 (9.8 MB)
MP4
03 k-nn-for-classification.mp4 (6.58 MB)
MP4
04 a-brief-recap.mp4 (4.7 MB)
MP4
01 predicting-house-prices-using-k-nearest-neighbors-regression REG06-NB01 ipynb.zip (5.29 KB)
ZIP
02 simple-and-multiple-regression.mp4 (13.05 MB)
MP4
03 assessing-performance-and-ridge-regression.mp4 (20.72 MB)
MP4
04 feature-selection-lasso-and-nearest-neighbor-regression.mp4 (12.06 MB)
MP4
01 what-we-covered-and-what-we-didn-t-cover.mp4 (16.55 MB)
MP4
02 thank-you.mp4 (5.78 MB)
MP4
01 welcome.mp4 (8.27 MB)
MP4
01 what-is-clustering.mp4 (8.82 MB)
MP4
02 k-means-intuition.mp4 (12.36 MB)
MP4
03 k-means-algorithm.mp4 (19.76 MB)
MP4
04 optimization-objective.mp4 (29.51 MB)
MP4
05 initializing-k-means.mp4 (17.84 MB)
MP4
06 choosing-the-number-of-clusters.mp4 (16.85 MB)
MP4
01 finding-unusual-events.mp4 (26.28 MB)
MP4
02 gaussian-normal-distribution.mp4 (20.88 MB)
MP4
03 anomaly-detection-algorithm.mp4 (20.32 MB)
MP4
04 developing-and-evaluating-an-anomaly-detection-system.mp4 (23.9 MB)
MP4
05 anomaly-detection-vs-supervised-learning.mp4 (20.31 MB)
MP4
06 choosing-what-features-to-use.mp4 (30.87 MB)
MP4
01 making-recommendations.mp4 (20.44 MB)
MP4
02 using-per-item-features.mp4 (23.49 MB)
MP4
03 collaborative-filtering-algorithm.mp4 (31.03 MB)
MP4
04 binary-labels-favs-likes-and-clicks.mp4 (19.84 MB)
MP4
01 mean-normalization.mp4 (18.9 MB)
MP4
03 finding-related-items.mp4 (16.62 MB)
MP4
01 collaborative-filtering-vs-content-based-filtering.mp4 (19.97 MB)
MP4
02 deep-learning-for-content-based-filtering.mp4 (24.34 MB)
MP4
03 recommending-from-a-large-catalogue.mp4 (17.98 MB)
MP4
04 ethical-use-of-recommender-systems.mp4 (24.83 MB)
MP4
05 tensorflow-implementation-of-content-based-filtering.mp4 (12.94 MB)
MP4
01 reducing-the-number-of-features-optional.mp4 (26.7 MB)
MP4
02 pca-algorithm-optional.mp4 (28.01 MB)
MP4
03 pca-in-code-optional.mp4 (17.8 MB)
MP4
01 what-is-reinforcement-learning.mp4 (30.97 MB)
MP4
02 mars-rover-example.mp4 (12.65 MB)
MP4
03 the-return-in-reinforcement-learning.mp4 (29.01 MB)
MP4
05 review-of-key-concepts.mp4 (11.39 MB)
MP4
01 state-action-value-function-definition.mp4 (19.84 MB)
MP4
02 state-action-value-function-example.mp4 (14.64 MB)
MP4
03 bellman-equation.mp4 (26.66 MB)
MP4
04 random-stochastic-environment-optional.mp4 (19.27 MB)
MP4
01 example-of-continuous-state-space-applications.mp4 (27.05 MB)
MP4
02 lunar-lander.mp4 (10.37 MB)
MP4
03 learning-the-state-value-function.mp4 (31.14 MB)
MP4
05 algorithm-refinement-greedy-policy.mp4 (25.27 MB)
MP4
07 the-state-of-reinforcement-learning.mp4 (7.86 MB)
MP4
01 summary-and-thank-you.mp4 (13.94 MB)
MP4






Join to our telegram Group
Information
Users of Guests are not allowed to comment this publication.
Choose Site Language
Keep downtopc Online Please

PREMIUM ACCOUNTS

Support downtopc by buying or renewing your premium account using below links: