PREMIUM ACCOUNTS

Support downtopc by buying or renewing your premium account using below links:







Partners
warezload

movieblogarea download
katzdownload

Coursera - Machine Learning Specialization (by University of Washington)

Category: Courses / Others
Author: AD-TEAM
Date added: 29.07.2023 :47:57
Views: 11
Comments: 0










Description material

Coursera - Machine Learning Specialization (by University of Washington)


Coursera - Machine Learning Specialization (by University of Washington)
Language: English | Size:5.55 GB
Genre:eLearning


Files Included :

03 welcome-to-this-course-and-specialization.mp4 (3.32 MB)
MP4
04 who-we-are.mp4 (28.43 MB)
MP4
05 machine-learning-is-changing-the-world.mp4 (16.31 MB)
MP4
06 why-a-case-study-approach.mp4 (29.06 MB)
MP4
07 specialization-overview.mp4 (27.28 MB)
MP4
01 how-we-got-into-ml.mp4 (19.12 MB)
MP4
02 who-is-this-specialization-for.mp4 (14.35 MB)
MP4
03 what-you-ll-be-able-to-do.mp4 (4.45 MB)
MP4
04 the-capstone-and-an-example-intelligent-application.mp4 (22.15 MB)
MP4
05 the-future-of-intelligent-applications.mp4 (12.79 MB)
MP4
02 starting-a-jupyter-notebook.mp4 (13.77 MB)
MP4
03 creating-variables-in-python.mp4 (17.69 MB)
MP4
04 conditional-statements-and-loops-in-python.mp4 (20.14 MB)
MP4
05 creating-functions-and-lambdas-in-python.mp4 (9.06 MB)
MP4
02 starting-turi-create-loading-an-sframe.mp4 (11.53 MB)
MP4
03 canvas-for-data-visualization.mp4 (9.76 MB)
MP4
04 interacting-with-columns-of-an-sframe.mp4 (10.46 MB)
MP4
05 using-apply-for-data-transformation.mp4 (12.46 MB)
MP4
02 predicting-house-prices-a-case-study-in-regression.mp4 (3.83 MB)
MP4
03 what-is-the-goal-and-how-might-you-naively-address-it.mp4 (10.06 MB)
MP4
04 linear-regression-a-model-based-approach.mp4 (12.72 MB)
MP4
05 adding-higher-order-effects.mp4 (10.41 MB)
MP4
01 evaluating-overfitting-via-training-test-split.mp4 (15.44 MB)
MP4
02 training-test-curves.mp4 (9.46 MB)
MP4
03 adding-other-features.mp4 (6.66 MB)
MP4
04 other-regression-examples.mp4 (13.48 MB)
MP4
01 regression-ml-block-diagram.mp4 (15.47 MB)
MP4
02 loading-exploring-house-sale-data.mp4 (18.41 MB)
MP4
03 splitting-the-data-into-training-and-test-sets.mp4 (6.17 MB)
MP4
05 evaluating-error-rmse-of-the-simple-model.mp4 (6.15 MB)
MP4
06 visualizing-predictions-of-simple-model-with-matplotlib.mp4 (11.87 MB)
MP4
07 inspecting-the-model-coefficients-learned.mp4 (3.39 MB)
MP4
08 exploring-other-features-of-the-data.mp4 (13.66 MB)
MP4
09 learning-a-model-to-predict-house-prices-from-more-features.mp4 (7.73 MB)
MP4
10 applying-learned-models-to-predict-price-of-an-average-house.mp4 (12.65 MB)
MP4
11 applying-learned-models-to-predict-price-of-two-fancy-houses.mp4 (22.37 MB)
MP4
02 analyzing-the-sentiment-of-reviews-a-case-study-in-classification.mp4 (2.85 MB)
MP4
03 what-is-an-intelligent-restaurant-review-system.mp4 (18.51 MB)
MP4
04 examples-of-classification-tasks.mp4 (23.02 MB)
MP4
05 linear-classifiers.mp4 (18.54 MB)
MP4
06 decision-boundaries.mp4 (16 MB)
MP4
01 training-and-evaluating-a-classifier.mp4 (12.95 MB)
MP4
02 whats-a-good-accuracy.mp4 (15.81 MB)
MP4
03 false-positives-false-negatives-and-confusion-matrices.mp4 (16.92 MB)
MP4
04 learning-curves.mp4 (22.21 MB)
MP4
05 class-probabilities.mp4 (8.66 MB)
MP4
01 classification-ml-block-diagram.mp4 (10.66 MB)
MP4
02 loading-exploring-product-review-data.mp4 (8 MB)
MP4
03 creating-the-word-count-vector.mp4 (6.19 MB)
MP4
04 exploring-the-most-popular-product.mp4 (12.11 MB)
MP4
05 defining-which-reviews-have-positive-or-negative-sentiment.mp4 (11.62 MB)
MP4
06 training-a-sentiment-classifier.mp4 (9.07 MB)
MP4
07 evaluating-a-classifier-the-roc-curve.mp4 (11.89 MB)
MP4
08 applying-model-to-find-most-positive-negative-reviews-for-a-product.mp4 (13.19 MB)
MP4
09 exploring-the-most-positive-negative-aspects-of-a-product.mp4 (15.78 MB)
MP4
06 calculating-tf-idf-vectors.mp4 (14.52 MB)
MP4
01 clustering-documents-task-overview.mp4 (9.84 MB)
MP4
02 clustering-documents-an-unsupervised-learning-task.mp4 (11.27 MB)
MP4
03 k-means-a-clustering-algorithm.mp4 (9.48 MB)
MP4
04 other-examples-of-clustering.mp4 (19.77 MB)
MP4
01 clustering-and-similarity-ml-block-diagram.mp4 (18.91 MB)
MP4
02 loading-exploring-wikipedia-data.mp4 (17.54 MB)
MP4
03 exploring-word-counts.mp4 (18.75 MB)
MP4
04 computing-exploring-tf-idfs.mp4 (18.35 MB)
MP4
05 computing-distances-between-wikipedia-articles.mp4 (15.38 MB)
MP4
07 examples-of-document-retrieval-in-action.mp4 (12.94 MB)
MP4
02 recommender-systems-overview.mp4 (4.62 MB)
MP4
03 where-we-see-recommender-systems-in-action.mp4 (26.7 MB)
MP4
04 building-a-recommender-system-via-classification.mp4 (13.42 MB)
MP4
01 collaborative-filtering-people-who-bought-this-also-bought.mp4 (15.26 MB)
MP4
02 effect-of-popular-items.mp4 (8.05 MB)
MP4
01 the-matrix-completion-task.mp4 (14.78 MB)
MP4
02 recommendations-from-known-user-item-features.mp4 (14.18 MB)
MP4
03 predictions-in-matrix-form.mp4 (7.45 MB)
MP4
04 discovering-hidden-structure-by-matrix-factorization.mp4 (17.22 MB)
MP4
05 bringing-it-all-together-featurized-matrix-factorization.mp4 (11.26 MB)
MP4
01 a-performance-metric-for-recommender-systems.mp4 (16.52 MB)
MP4
02 optimal-recommenders.mp4 (5.88 MB)
MP4
03 precision-recall-curves.mp4 (16.28 MB)
MP4
01 recommender-systems-ml-block-diagram.mp4 (12.28 MB)
MP4
02 loading-and-exploring-song-data.mp4 (14.79 MB)
MP4
03 creating-evaluating-a-popularity-based-song-recommender.mp4 (13.15 MB)
MP4
04 creating-evaluating-a-personalized-song-recommender.mp4 (16.4 MB)
MP4
05 using-precision-recall-to-compare-recommender-models.mp4 (11.25 MB)
MP4
02 searching-for-images-a-case-study-in-deep-learning.mp4 (1.68 MB)
MP4
03 what-is-a-visual-product-recommender.mp4 (16.65 MB)
MP4
04 learning-very-non-linear-features-with-neural-networks.mp4 (32.85 MB)
MP4
01 application-of-deep-learning-to-computer-vision.mp4 (19.31 MB)
MP4
02 deep-learning-performance.mp4 (13.24 MB)
MP4
03 demo-of-deep-learning-model-on-imagenet-data.mp4 (7.87 MB)
MP4
04 other-examples-of-deep-learning-in-computer-vision.mp4 (6.71 MB)
MP4
05 challenges-of-deep-learning.mp4 (11.07 MB)
MP4
06 deep-features.mp4 (24.39 MB)
MP4
01 deep-learning-ml-block-diagram.mp4 (11.14 MB)
MP4
02 loading-image-data.mp4 (9.42 MB)
MP4
02 loading-image-data.mp4 (7.42 MB)
MP4
03 creating-a-nearest-neighbors-model-for-image-retrieval.mp4 (4.74 MB)
MP4
05 querying-for-the-most-similar-images-for-car-image.mp4 (4.64 MB)
MP4
02 you-ve-made-it.mp4 (2.82 MB)
MP4
03 deploying-an-ml-service.mp4 (15.11 MB)
MP4
04 what-happens-after-deployment.mp4 (29.95 MB)
MP4
01 open-challenges-in-ml.mp4 (33.33 MB)
MP4
02 where-is-ml-going.mp4 (37.8 MB)
MP4
03 whats-ahead-in-the-specialization.mp4 (22.19 MB)
MP4
04 thank-you.mp4 (8.23 MB)
MP4
03 welcome-to-the-classification-course-a-part-of-the-machine-learning.mp4 (4.62 MB)
MP4
04 what-is-this-course-about.mp4 (22.06 MB)
MP4
05 impact-of-classification.mp4 (4.04 MB)
MP4
01 course-overview.mp4 (11.43 MB)
MP4
02 outline-of-first-half-of-course.mp4 (19.39 MB)
MP4
03 outline-of-second-half-of-course.mp4 (20.16 MB)
MP4
04 assumed-background.mp4 (12.02 MB)
MP4
05 lets-get-started.mp4 (2.76 MB)
MP4
02 linear-classifiers-a-motivating-example.mp4 (9.9 MB)
MP4
03 intuition-behind-linear-classifiers.mp4 (12.31 MB)
MP4
04 decision-boundaries.mp4 (11.1 MB)
MP4
05 linear-classifier-model.mp4 (19.07 MB)
MP4
06 effect-of-coefficient-values-on-decision-boundary.mp4 (7.65 MB)
MP4
07 using-features-of-the-inputs.mp4 (8.72 MB)
MP4
01 predicting-class-probabilities.mp4 (5.7 MB)
MP4
02 review-of-basics-of-probabilities.mp4 (15.54 MB)
MP4
03 review-of-basics-of-conditional-probabilities.mp4 (19.91 MB)
MP4
04 using-probabilities-in-classification.mp4 (9.9 MB)
MP4
01 predicting-class-probabilities-with-generalized-linear-models.mp4 (19.87 MB)
MP4
02 the-sigmoid-or-logistic-link-function.mp4 (12.01 MB)
MP4
03 logistic-regression-model.mp4 (11.4 MB)
MP4
04 effect-of-coefficient-values-on-predicted-probabilities.mp4 (16.99 MB)
MP4
05 overview-of-learning-logistic-regression-models.mp4 (7.87 MB)
MP4
01 encoding-categorical-inputs.mp4 (14.56 MB)
MP4
02 multiclass-classification-with-1-versus-all.mp4 (22.67 MB)
MP4
01 recap-of-logistic-regression-classifier.mp4 (5.2 MB)
MP4
02 goal-learning-parameters-of-logistic-regression.mp4 (8.84 MB)
MP4
03 intuition-behind-maximum-likelihood-estimation.mp4 (11.32 MB)
MP4
04 data-likelihood.mp4 (18.3 MB)
MP4
05 finding-best-linear-classifier-with-gradient-ascent.mp4 (9.94 MB)
MP4
01 review-of-gradient-ascent.mp4 (15.46 MB)
MP4
02 learning-algorithm-for-logistic-regression.mp4 (8 MB)
MP4
04 interpreting-derivative-for-logistic-regression.mp4 (13.67 MB)
MP4
01 choosing-step-size.mp4 (14.4 MB)
MP4
02 careful-with-step-sizes-that-are-too-large.mp4 (11.16 MB)
MP4
03 rule-of-thumb-for-choosing-step-size.mp4 (9.36 MB)
MP4
02 very-optional-expressing-the-log-likelihood.mp4 (7.06 MB)
MP4
03 very-optional-deriving-probability-y-1-given-x.mp4 (4.96 MB)
MP4
05 very-optional-deriving-gradient-of-log-likelihood.mp4 (17.85 MB)
MP4
01 recap-of-learning-logistic-regression-classifiers.mp4 (6.96 MB)
MP4
02 evaluating-a-classifier.mp4 (9.26 MB)
MP4
03 review-of-overfitting-in-regression.mp4 (9.6 MB)
MP4
04 overfitting-in-classification.mp4 (14.24 MB)
MP4
05 visualizing-overfitting-with-high-degree-polynomial-features.mp4 (9.93 MB)
MP4
02 visualizing-overconfident-predictions.mp4 (10.19 MB)
MP4
01 penalizing-large-coefficients-to-mitigate-overfitting.mp4 (14.82 MB)
MP4
02 l2-regularized-logistic-regression.mp4 (12.49 MB)
MP4
03 visualizing-effect-of-l2-regularization-in-logistic-regression.mp4 (13.56 MB)
MP4
01 sparse-logistic-regression-with-l1-regularization.mp4 (20.75 MB)
MP4
02 predicting-loan-defaults-with-decision-trees.mp4 (13.74 MB)
MP4
03 intuition-behind-decision-trees.mp4 (5.9 MB)
MP4
04 task-of-learning-decision-trees-from-data.mp4 (10.97 MB)
MP4
01 recursive-greedy-algorithm.mp4 (11.15 MB)
MP4
02 learning-a-decision-stump.mp4 (12.9 MB)
MP4
03 selecting-best-feature-to-split-on.mp4 (15.14 MB)
MP4
04 when-to-stop-recursing.mp4 (15.5 MB)
MP4
01 making-predictions-with-decision-trees.mp4 (4.84 MB)
MP4
02 multiclass-classification-with-decision-trees.mp4 (7 MB)
MP4
01 threshold-splits-for-continuous-inputs.mp4 (17.28 MB)
MP4
02 optional-picking-the-best-threshold-to-split-on.mp4 (9.47 MB)
MP4
03 visualizing-decision-boundaries.mp4 (13.2 MB)
MP4
01 recap-of-decision-trees.mp4 (3.43 MB)
MP4
02 a-review-of-overfitting.mp4 (7.18 MB)
MP4
03 overfitting-in-decision-trees.mp4 (16.82 MB)
MP4
01 principle-of-occams-razor-learning-simpler-decision-trees.mp4 (14.5 MB)
MP4
02 early-stopping-in-learning-decision-trees.mp4 (22.21 MB)
MP4
01 optional-motivating-pruning.mp4 (21.63 MB)
MP4
02 optional-pruning-decision-trees-to-avoid-overfitting.mp4 (16.72 MB)
MP4
03 optional-tree-pruning-algorithm.mp4 (11.89 MB)
MP4
02 challenge-of-missing-data.mp4 (12.63 MB)
MP4
03 strategy-1-purification-by-skipping-missing-data.mp4 (12.92 MB)
MP4
04 strategy-2-purification-by-imputing-missing-data.mp4 (15.88 MB)
MP4
01 modifying-decision-trees-to-handle-missing-data.mp4 (14.41 MB)
MP4
02 feature-split-selection-with-missing-data.mp4 (16.06 MB)
MP4
01 recap-of-handling-missing-data.mp4 (6.18 MB)
MP4
02 the-boosting-question.mp4 (13.24 MB)
MP4
03 ensemble-classifiers.mp4 (17.52 MB)
MP4
04 boosting.mp4 (21.42 MB)
MP4
01 adaboost-overview.mp4 (7.75 MB)
MP4
02 weighted-error.mp4 (13.15 MB)
MP4
03 computing-coefficient-of-each-ensemble-component.mp4 (12.1 MB)
MP4
04 reweighing-data-to-focus-on-mistakes.mp4 (11.78 MB)
MP4
05 normalizing-weights.mp4 (6.74 MB)
MP4
01 example-of-adaboost-in-action.mp4 (11.87 MB)
MP4
02 learning-boosted-decision-stumps-with-adaboost.mp4 (13.99 MB)
MP4
01 the-boosting-theorem.mp4 (10.85 MB)
MP4
02 overfitting-in-boosting.mp4 (14.59 MB)
MP4
01 ensemble-methods-impact-of-boosting-quick-recap.mp4 (16.2 MB)
MP4
02 case-study-where-accuracy-is-not-best-metric-for-classification.mp4 (12.61 MB)
MP4
03 what-is-good-performance-for-a-classifier.mp4 (13.81 MB)
MP4
01 precision-fraction-of-positive-predictions-that-are-actually-positive.mp4 (15.57 MB)
MP4
02 recall-fraction-of-positive-data-predicted-to-be-positive.mp4 (10.56 MB)
MP4
01 precision-recall-extremes.mp4 (8.63 MB)
MP4
02 trading-off-precision-and-recall.mp4 (13.2 MB)
MP4
03 precision-recall-curve.mp4 (15.66 MB)
MP4
01 recap-of-precision-recall.mp4 (5.11 MB)
MP4
02 gradient-ascent-won-t-scale-to-todays-huge-datasets.mp4 (11.97 MB)
MP4
03 timeline-of-scalable-machine-learning-stochastic-gradient.mp4 (12.07 MB)
MP4
01 why-gradient-ascent-won-t-scale.mp4 (8.91 MB)
MP4
02 stochastic-gradient-learning-one-data-point-at-a-time.mp4 (8.82 MB)
MP4
03 comparing-gradient-to-stochastic-gradient.mp4 (11.1 MB)
MP4
01 why-would-stochastic-gradient-ever-work.mp4 (10.36 MB)
MP4
02 convergence-paths.mp4 (7.09 MB)
MP4
01 shuffle-data-before-running-stochastic-gradient.mp4 (5.89 MB)
MP4
02 choosing-step-size.mp4 (9.64 MB)
MP4
03 don-t-trust-last-coefficients.mp4 (6.02 MB)
MP4
04 optional-learning-from-batches-of-data.mp4 (11.99 MB)
MP4
05 optional-measuring-convergence.mp4 (12.5 MB)
MP4
06 optional-adding-regularization.mp4 (10.85 MB)
MP4
01 the-online-learning-task.mp4 (10.21 MB)
MP4
02 using-stochastic-gradient-for-online-learning.mp4 (14.39 MB)
MP4
03 welcome-and-introduction-to-clustering-and-retrieval-tasks.mp4 (19.84 MB)
MP4
04 course-overview.mp4 (10.58 MB)
MP4
05 module-by-module-topics-covered.mp4 (28.97 MB)
MP4
06 assumed-background.mp4 (19.43 MB)
MP4
02 retrieval-as-k-nearest-neighbor-search.mp4 (9.38 MB)
MP4
03 1-nn-algorithm.mp4 (6.79 MB)
MP4
04 k-nn-algorithm.mp4 (17.38 MB)
MP4
01 document-representation.mp4 (14.08 MB)
MP4
02 distance-metrics-euclidean-and-scaled-euclidean.mp4 (21.05 MB)
MP4
04 distance-metrics-cosine-similarity.mp4 (20.12 MB)
MP4
05 to-normalize-or-not-and-other-distance-considerations.mp4 (21.58 MB)
MP4
01 complexity-of-brute-force-search.mp4 (5.92 MB)
MP4
02 kd-tree-representation.mp4 (22.57 MB)
MP4
03 nn-search-with-kd-trees.mp4 (16.25 MB)
MP4
04 complexity-of-nn-search-with-kd-trees.mp4 (13.51 MB)
MP4
05 visualizing-scaling-behavior-of-kd-trees.mp4 (10.15 MB)
MP4
06 approximate-k-nn-search-using-kd-trees.mp4 (22.95 MB)
MP4
01 limitations-of-kd-trees.mp4 (11.58 MB)
MP4
02 lsh-as-an-alternative-to-kd-trees.mp4 (12.85 MB)
MP4
03 using-random-lines-to-partition-points.mp4 (17.06 MB)
MP4
04 defining-more-bins.mp4 (10.54 MB)
MP4
05 searching-neighboring-bins.mp4 (22.02 MB)
MP4
06 lsh-in-higher-dimensions.mp4 (9.9 MB)
MP4
07 optional-improving-efficiency-through-multiple-tables.mp4 (54.2 MB)
MP4
01 a-brief-recap.mp4 (6.37 MB)
MP4
02 the-goal-of-clustering.mp4 (10.66 MB)
MP4
03 an-unsupervised-task.mp4 (16.48 MB)
MP4
04 hope-for-unsupervised-learning-and-some-challenge-cases.mp4 (11.58 MB)
MP4
01 the-k-means-algorithm.mp4 (17.25 MB)
MP4
02 k-means-as-coordinate-descent.mp4 (17.76 MB)
MP4
03 smart-initialization-via-k-means.mp4 (12.09 MB)
MP4
04 assessing-the-quality-and-choosing-the-number-of-clusters.mp4 (21.18 MB)
MP4
01 motivating-mapreduce.mp4 (20.39 MB)
MP4
02 the-general-mapreduce-abstraction.mp4 (12.11 MB)
MP4
03 mapreduce-execution-overview-and-combiners.mp4 (14.42 MB)
MP4
04 mapreduce-for-k-means.mp4 (18.54 MB)
MP4
01 other-applications-of-clustering.mp4 (21.55 MB)
MP4
02 a-brief-recap.mp4 (3.73 MB)
MP4
02 motiving-probabilistic-clustering-models.mp4 (22.35 MB)
MP4
03 aggregating-over-unknown-classes-in-an-image-dataset.mp4 (21.56 MB)
MP4
04 univariate-gaussian-distributions.mp4 (9.02 MB)
MP4
05 bivariate-and-multivariate-gaussians.mp4 (21.26 MB)
MP4
01 mixture-of-gaussians.mp4 (21.04 MB)
MP4
02 interpreting-the-mixture-of-gaussian-terms.mp4 (14.38 MB)
MP4
03 scaling-mixtures-of-gaussians-for-document-clustering.mp4 (17.21 MB)
MP4
01 computing-soft-assignments-from-known-cluster-parameters.mp4 (21.76 MB)
MP4
02 optional-responsibilities-as-bayes-rule.mp4 (14.41 MB)
MP4
03 estimating-cluster-parameters-from-known-cluster-assignments.mp4 (18.82 MB)
MP4
04 estimating-cluster-parameters-from-soft-assignments.mp4 (21.4 MB)
MP4
01 em-iterates-in-equations-and-pictures.mp4 (16.69 MB)
MP4
02 convergence-initialization-and-overfitting-of-em.mp4 (29.91 MB)
MP4
03 relationship-to-k-means.mp4 (10.37 MB)
MP4
01 a-brief-recap.mp4 (4.42 MB)
MP4
02 mixed-membership-models-for-documents.mp4 (13.22 MB)
MP4
05 goal-of-lda-inference.mp4 (18.22 MB)
MP4
01 the-need-for-bayesian-inference.mp4 (17.01 MB)
MP4
02 gibbs-sampling-from-10-000-feet.mp4 (18.44 MB)
MP4
03 a-standard-gibbs-sampler-for-lda.mp4 (29.27 MB)
MP4
01 what-is-collapsed-gibbs-sampling.mp4 (11.71 MB)
MP4
02 a-worked-example-for-lda-initial-setup.mp4 (8.78 MB)
MP4
04 using-the-output-of-collapsed-gibbs-sampling.mp4 (15.23 MB)
MP4
01 a-brief-recap.mp4 (5.05 MB)
MP4
02 module-1-recap.mp4 (29.31 MB)
MP4
03 module-2-recap.mp4 (10.54 MB)
MP4
04 module-3-recap.mp4 (19.72 MB)
MP4
05 module-4-recap.mp4 (25.94 MB)
MP4
01 why-hierarchical-clustering.mp4 (7.7 MB)
MP4
02 divisive-clustering.mp4 (13.08 MB)
MP4
03 agglomerative-clustering.mp4 (8.65 MB)
MP4
04 the-dendrogram.mp4 (15.35 MB)
MP4
06 hidden-markov-models.mp4 (32.1 MB)
MP4
01 what-we-didn-t-cover.mp4 (8.6 MB)
MP4
02 thank-you.mp4 (7.11 MB)
MP4
03 welcome.mp4 (4.87 MB)
MP4
04 what-is-the-course-about.mp4 (11.19 MB)
MP4
05 outlining-the-first-half-of-the-course.mp4 (14.84 MB)
MP4
06 outlining-the-second-half-of-the-course.mp4 (16.16 MB)
MP4
07 assumed-background.mp4 (11.85 MB)
MP4
02 a-case-study-in-predicting-house-prices.mp4 (3.81 MB)
MP4
03 regression-fundamentals-data-model.mp4 (22.35 MB)
MP4
04 regression-fundamentals-the-task.mp4 (7.33 MB)
MP4
05 regression-ml-block-diagram.mp4 (11.74 MB)
MP4
01 the-simple-linear-regression-model.mp4 (7.65 MB)
MP4
02 the-cost-of-using-a-given-line.mp4 (17.45 MB)
MP4
03 using-the-fitted-line.mp4 (16.62 MB)
MP4
04 interpreting-the-fitted-line.mp4 (15.17 MB)
MP4
01 defining-our-least-squares-optimization-objective.mp4 (10.19 MB)
MP4
02 finding-maxima-or-minima-analytically.mp4 (16.85 MB)
MP4
03 maximizing-a-1d-function-a-worked-example.mp4 (7.33 MB)
MP4
04 finding-the-max-via-hill-climbing.mp4 (15.69 MB)
MP4
05 finding-the-min-via-hill-descent.mp4 (8.54 MB)
MP4
06 choosing-stepsize-and-convergence-criteria.mp4 (14.71 MB)
MP4
01 gradients-derivatives-in-multiple-dimensions.mp4 (14.01 MB)
MP4
02 gradient-descent-multidimensional-hill-descent.mp4 (16.87 MB)
MP4
01 computing-the-gradient-of-rss.mp4 (17.03 MB)
MP4
02 approach-1-closed-form-solution.mp4 (14.07 MB)
MP4
04 approach-2-gradient-descent.mp4 (18.36 MB)
MP4
06 comparing-the-approaches.mp4 (6.22 MB)
MP4
02 influence-of-high-leverage-points-exploring-the-data.mp4 (11.92 MB)
MP4
03 influence-of-high-leverage-points-removing-center-city.mp4 (19.52 MB)
MP4
04 influence-of-high-leverage-points-removing-high-end-towns.mp4 (9.33 MB)
MP4
05 asymmetric-cost-functions.mp4 (9.4 MB)
MP4
06 a-brief-recap.mp4 (4.48 MB)
MP4
02 multiple-regression-intro.mp4 (1.21 MB)
MP4
03 polynomial-regression.mp4 (11.56 MB)
MP4
04 modeling-seasonality.mp4 (30.01 MB)
MP4
05 where-we-see-seasonality.mp4 (11.26 MB)
MP4
06 regression-with-general-features-of-1-input.mp4 (8.6 MB)
MP4
01 motivating-the-use-of-multiple-inputs.mp4 (14.17 MB)
MP4
02 defining-notation.mp4 (11.87 MB)
MP4
03 regression-with-features-of-multiple-inputs.mp4 (12.6 MB)
MP4
04 interpreting-the-multiple-regression-fit.mp4 (24.67 MB)
MP4
02 rewriting-the-single-observation-model-in-vector-notation.mp4 (15.44 MB)
MP4
03 rewriting-the-model-for-all-observations-in-matrix-notation.mp4 (10.19 MB)
MP4
04 computing-the-cost-of-a-d-dimensional-curve.mp4 (21.24 MB)
MP4
01 computing-the-gradient-of-rss.mp4 (7.25 MB)
MP4
02 approach-1-closed-form-solution.mp4 (9.99 MB)
MP4
03 discussing-the-closed-form-solution.mp4 (10.85 MB)
MP4
04 approach-2-gradient-descent.mp4 (5.36 MB)
MP4
05 feature-by-feature-update.mp4 (18.98 MB)
MP4
06 algorithmic-summary-of-gradient-descent-approach.mp4 (10.97 MB)
MP4
01 a-brief-recap.mp4 (3.91 MB)
MP4
02 assessing-performance-intro.mp4 (1.77 MB)
MP4
03 what-do-we-mean-by-loss.mp4 (13.85 MB)
MP4
01 training-error-assessing-loss-on-the-training-set.mp4 (20.37 MB)
MP4
02 generalization-error-what-we-really-want.mp4 (21.76 MB)
MP4
03 test-error-what-we-can-actually-compute.mp4 (12.93 MB)
MP4
04 defining-overfitting.mp4 (6.1 MB)
MP4
05 training-test-split.mp4 (6.1 MB)
MP4
01 irreducible-error-and-bias.mp4 (20.89 MB)
MP4
02 variance-and-the-bias-variance-tradeoff.mp4 (18.96 MB)
MP4
03 error-vs-amount-of-data.mp4 (14.68 MB)
MP4
01 formally-defining-the-3-sources-of-error.mp4 (45.24 MB)
MP4
02 formally-deriving-why-3-sources-of-error.mp4 (46.69 MB)
MP4
01 training-validation-test-split-for-model-selection-fitting-and-assessment.mp4 (25.37 MB)
MP4
02 a-brief-recap.mp4 (5.01 MB)
MP4
02 symptoms-of-overfitting-in-polynomial-regression.mp4 (6.91 MB)
MP4
04 overfitting-demo.mp4 (16.94 MB)
MP4
05 overfitting-for-more-general-multiple-regression-models.mp4 (11.33 MB)
MP4
01 balancing-fit-and-magnitude-of-coefficients.mp4 (18.11 MB)
MP4
02 the-resulting-ridge-objective-and-its-extreme-solutions.mp4 (13.61 MB)
MP4
03 how-ridge-regression-balances-bias-and-variance.mp4 (5.33 MB)
MP4
05 ridge-regression-demo.mp4 (24.95 MB)
MP4
06 the-ridge-coefficient-path.mp4 (9.57 MB)
MP4
01 computing-the-gradient-of-the-ridge-objective.mp4 (14.78 MB)
MP4
02 approach-1-closed-form-solution.mp4 (13.31 MB)
MP4
03 discussing-the-closed-form-solution.mp4 (13.45 MB)
MP4
04 approach-2-gradient-descent.mp4 (22.08 MB)
MP4
01 selecting-tuning-parameters-via-cross-validation.mp4 (12.39 MB)
MP4
02 k-fold-cross-validation.mp4 (17.01 MB)
MP4
03 how-to-handle-the-intercept.mp4 (18.6 MB)
MP4
04 a-brief-recap.mp4 (5.24 MB)
MP4
02 the-feature-selection-task.mp4 (11.53 MB)
MP4
03 all-subsets.mp4 (13.65 MB)
MP4
04 complexity-of-all-subsets.mp4 (6.84 MB)
MP4
05 greedy-algorithms.mp4 (18.66 MB)
MP4
06 complexity-of-the-greedy-forward-stepwise-algorithm.mp4 (8.4 MB)
MP4
01 can-we-use-regularization-for-feature-selection.mp4 (11.56 MB)
MP4
02 thresholding-ridge-coefficients.mp4 (13.86 MB)
MP4
03 the-lasso-objective-and-its-coefficient-path.mp4 (15.55 MB)
MP4
01 visualizing-the-ridge-cost.mp4 (17.83 MB)
MP4
02 visualizing-the-ridge-solution.mp4 (14.71 MB)
MP4
03 visualizing-the-lasso-cost-and-solution.mp4 (18.4 MB)
MP4
05 lasso-demo.mp4 (12.17 MB)
MP4
01 what-makes-the-lasso-objective-different.mp4 (8.39 MB)
MP4
02 coordinate-descent.mp4 (15.11 MB)
MP4
03 normalizing-features.mp4 (9.35 MB)
MP4
04 coordinate-descent-for-least-squares-regression-normalized-features.mp4 (20.81 MB)
MP4
01 coordinate-descent-for-lasso-normalized-features.mp4 (12.61 MB)
MP4
02 assessing-convergence-and-other-lasso-solvers.mp4 (9.33 MB)
MP4
03 coordinate-descent-for-lasso-unnormalized-features.mp4 (5.91 MB)
MP4
01 deriving-the-lasso-coordinate-descent-update.mp4 (42.7 MB)
MP4
01 choosing-the-penalty-strength-and-other-practical-issues-with-lasso.mp4 (19.38 MB)
MP4
02 a-brief-recap.mp4 (11.18 MB)
MP4
02 limitations-of-parametric-regression.mp4 (11.29 MB)
MP4
01 1-nearest-neighbor-regression-approach.mp4 (21.48 MB)
MP4
02 distance-metrics.mp4 (14.18 MB)
MP4
03 1-nearest-neighbor-algorithm.mp4 (10.84 MB)
MP4
01 k-nearest-neighbors-regression.mp4 (19.3 MB)
MP4
02 k-nearest-neighbors-in-practice.mp4 (11.67 MB)
MP4
03 weighted-k-nearest-neighbors.mp4 (13.81 MB)
MP4
01 from-weighted-k-nn-to-kernel-regression.mp4 (18.56 MB)
MP4
02 global-fits-of-parametric-models-vs-local-fits-of-kernel-regression.mp4 (20.08 MB)
MP4
01 performance-of-nn-as-amount-of-data-grows.mp4 (21.87 MB)
MP4
02 issues-with-high-dimensions-data-scarcity-and-computational-complexity.mp4 (9.8 MB)
MP4
03 k-nn-for-classification.mp4 (6.58 MB)
MP4
04 a-brief-recap.mp4 (4.7 MB)
MP4
02 simple-and-multiple-regression.mp4 (13.05 MB)
MP4
03 assessing-performance-and-ridge-regression.mp4 (20.72 MB)
MP4
04 feature-selection-lasso-and-nearest-neighbor-regression.mp4 (12.06 MB)
MP4
01 what-we-covered-and-what-we-didn-t-cover.mp4 (16.55 MB)
MP4
02 thank-you.mp4 (5.78 MB)
MP4







Join to our telegram Group
Information
Users of Guests are not allowed to comment this publication.
Choose Site Language
Keep downtopc Online Please

PREMIUM ACCOUNTS

Support downtopc by buying or renewing your premium account using below links: