PREMIUM ACCOUNTS

Support downtopc by buying or renewing your premium account using below links:







Partners
warezload

movieblogarea download
katzdownload

Coursera - Device-based Models with TensorFlow Lite

Category: Courses / Others
Author: AD-TEAM
Date added: 03.12.2024 :25:29
Views: 0
Comments: 0










Description material
Coursera - Device-based Models with TensorFlow Lite
386.03 MB | 00:05:09 | mp4 | 1280X720 | 16:9
Genre:eLearning |Language:English



Files Included :
01 introduction-a-conversation-with-andrew-ng (37.84 MB)
01 a-few-words-from-laurence (4.83 MB)
02 features-and-components-of-mobile-ai (2.74 MB)
03 architecture-and-performance (5.86 MB)
06 optimization-techniques (3.87 MB)
01 saving-converting-and-optimizing-a-model (6.49 MB)
02 examples (3.09 MB)
03 quantization (5.1 MB)
04 tf-select (4.93 MB)
06 paths-in-optimization (3.71 MB)
01 running-the-models (4.71 MB)
02 transfer-learning (10.15 MB)
03 converting-a-model-to-tflite (4.72 MB)
04 transfer-learning-with-tflite (15.55 MB)
01 introduction-a-conversation-with-andrew (3 MB)
02 installation-and-resources (4.17 MB)
04 architecture-of-a-model (1.3 MB)
05 initializing-the-interpreter (3.49 MB)
06 preparing-the-input (2.21 MB)
07 inference-and-results (2.88 MB)
01 code-walkthrough (7.29 MB)
02 run-the-app (6.76 MB)
01 classifying-camera-images (2.65 MB)
02 initialize-and-prepare-input (6.22 MB)
01 demo-of-camera-image-classifier (13.35 MB)
01 initialize-model-and-prepare-inputs (5.01 MB)
02 inference-and-results (5.04 MB)
01 demo-of-the-object-detection-app (4.68 MB)
02 code-for-the-inference-and-results (7.13 MB)
01 introduction-a-conversation-with-andrew-ng (6.41 MB)
02 a-few-words-from-laurence (6.04 MB)
03 what-is-swift (3.72 MB)
04 tensorflowliteswift (1.96 MB)
06 cats-vs-dogs-app (2.56 MB)
07 taking-the-initial-steps (4.15 MB)
09 scaling-the-image (2.92 MB)
11 more-steps-in-the-process (4.87 MB)
01 looking-at-the-app-in-xcode (13.45 MB)
02 what-have-we-done-so-far-and-how-do-we-continue (3.72 MB)
03 using-the-app (2.73 MB)
04 app-architecture (3.36 MB)
05 model-details (1.4 MB)
07 initial-steps (5.91 MB)
09 final-steps (2.87 MB)
01 looking-at-the-code-for-the-image-classification-app (13.62 MB)
02 object-classification-intro (2.57 MB)
03 tfl-detect-app (6.42 MB)
04 app-architecture (1.16 MB)
06 initial-steps (1.27 MB)
07 final-steps (6.03 MB)
08 looking-at-the-code-for-the-object-detection-model (10.66 MB)
01 introduction-a-conversation-with-andrew-ng (17.13 MB)
02 a-few-words-from-laurence (6.09 MB)
03 devices (5.42 MB)
01 starting-to-work-on-a-raspberry-pi (3.23 MB)
02 how-do-we-start (4.52 MB)
04 image-classification (1.67 MB)
06 the-4-step-process (3.11 MB)
07 object-detection (4.16 MB)
09 back-to-the-4-step-process (7.09 MB)
01 raspberry-pi-demo (7.96 MB)
01 microcontrollers (7.77 MB)
04 closing-words-by-laurence (2.74 MB)
02 a-conversation-with-andrew-ng (8.37 MB)]
Screenshot


Join to our telegram Group
Information
Users of Guests are not allowed to comment this publication.
Choose Site Language
Keep downtopc Online Please

PREMIUM ACCOUNTS

Support downtopc by buying or renewing your premium account using below links: